

Nutrient Tracking Tool

ACES, December 6, 2018

Mindy Selman

Office of Environmental Markets, USDA

About NTT

NTT is an online, field-scale tool for estimating N, P and sediment losses from crop and pasture lands.

History of NTT

- Developed to facilitate Water Quality Trading
- Prototyped by Texas Institute for Applied Environmental Research (TIAER) and NRCS in 2008 – 2010
- OEM worked to TIAER to develop the current version of NTT which is national in scope and represents the 3rd generation of NTT

Purpose of NTT

- OEM supported development of NTT as the science tool behind water quality trading
- Other applications:
 - Corporate sustainability/Supply chain sust.
 - Education & outreach
 - Planning
 - Research & analysis

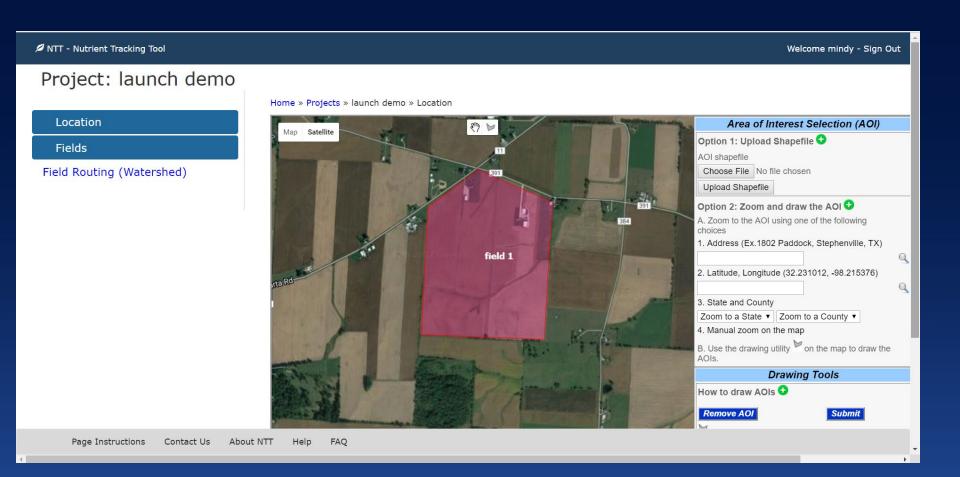
Let's get technical...

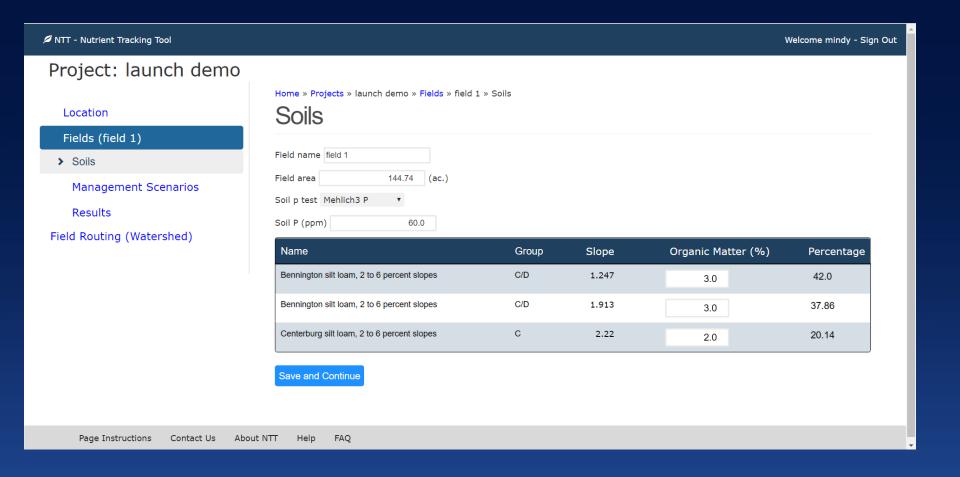
- NTT uses the Agriculture Policy Environmental eXtender (APEX) model
- Data used by APEX
 - National Soils Database (SSURGO)
 - PRISM climate database
 - 30m resolution DEM data (to estimate slope)

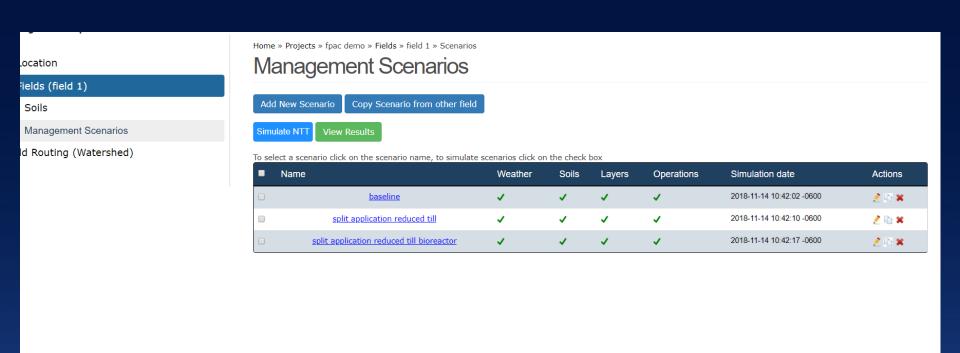
Tailoring APEX to Regional Conditions

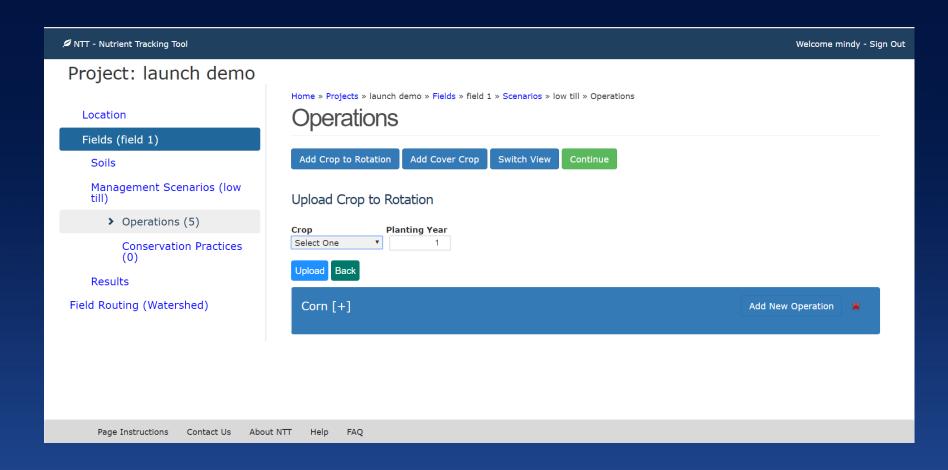
- 2 phases of tool parameterization/validation
 - 1. State-level parameterization using publically available data (e.g. yield).
 - 2. Parameterizaiton using local field-scale data (where available)
- Goal: have phase 1 completed for U.S. by end of year
- Site-level parameterization completed for Ohio/Great Lakes area. Working of several others.
- Regions that have not yet been fine-tuned are using standard parameters for time being

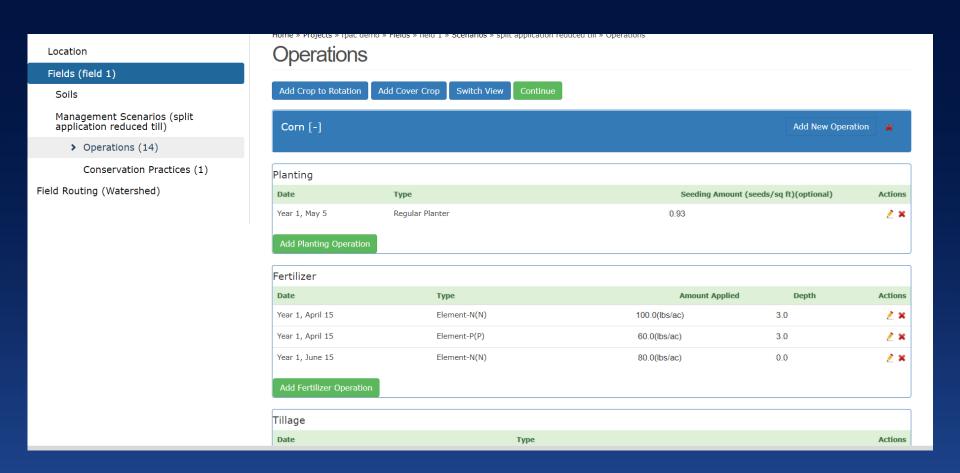
NTT Example

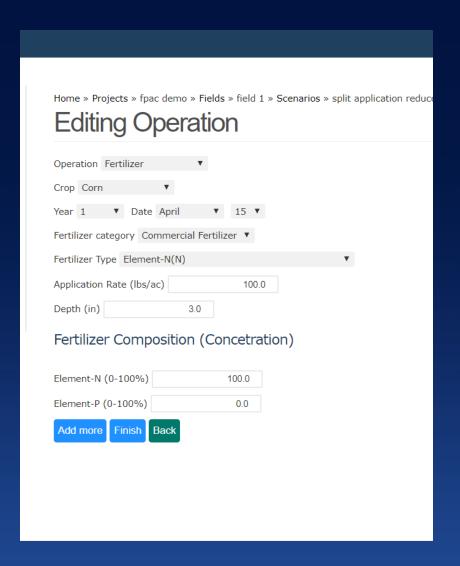

- The following slides walk through NTT
- User will first sign in, create a project and define fields
- For each field user will enter one or more management scenarios that can be compared

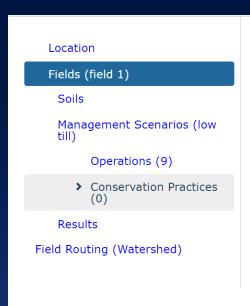

ntt.tiaer.tarleton.edu

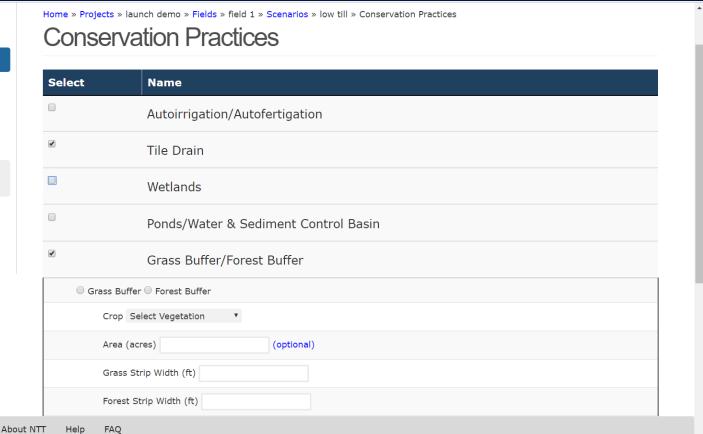












Page Instructions

Contact Us

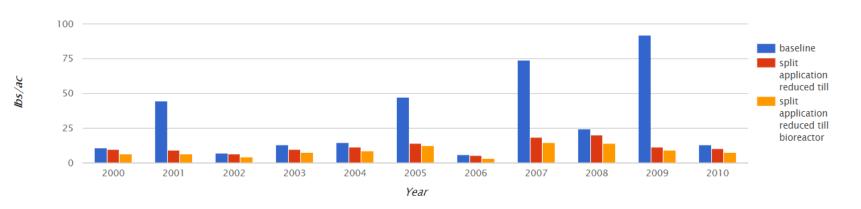
NTT Results

- After creating one or more scenarios for a field, user can view and compare results.
- NTT displays nutrient and sediment losses at the "edge of the field" as well as estimated yields.
- Results can be viewed in tabular format, or graphical formats (annual or monthly averages).

Soils Management Scenarios Tabular All Years Dry Years Wet Years Annual-Chart Monthly-Chart d Routing (Watershed)

Select up to 3 scenarios for view												
baseline	•	split application re ▼	split application re $^\blacktriangledown$	Unit Area Total Area	View	Download PDF	Download Excel					
(±) = Confidence	Inter	val										

	baseline	split applica	tion reduced till	split application reduced till bioreactor			
Description	Losses(±)	Losses(±)	Change(%)	Losses(±)	Change(%)		
Total N (lbs/ac)	42.9 (17.2)	17.5 (5.8)	-25.4 (-59.3)	13.1 (4.7)	-29.9 (-69.6)		
Org N (lbs/ac)	4.53 (2.2)	4.35 (2.4)	-0.18 (-3.92)	4.35 (2.4)	-0.18 (-3.92)		
Runoff N (lbs/ac)	28.09 (12.6)	2.73 (0.8)	-25.36 (-90.27)	2.73 (0.8)	-25.36 (-90.27)		
Subsurface N (lbs/ac)	0.09 (0.0)	0.11 (0.0)	0.02 (22.45)	0.11 (0.0)	0.02 (22.45)		
Tile Drain N (lbs/ac)	10.20 (2.4)	10.28 (2.5)	0.08 (0.8)	5.86 (1.4)	-4.34 (-42.5)		
Total P (lbs/ac) □	2.3 (0.7)	1.1 (0.4)	-1.2 (-51.8)	1.1 (0.4)	-1.2 (-51.8)		
Surface/Subsurface/Tile Drain Flow (in)	13.4 (2.6)	13.7 (2.6)	0.3 (2.2)	13.7 (2.6)	0.3 (2.2)		
Total Other Water Info (in)	0.7 (0.2)	0.8 (0.2)	0.1 (17.1)	0.8 (0.2)	0.1 (17.1)		
Total Sediment (t/ac) □	0.5 (0.3)	0.4 (0.3)	-0.1 (-13.7)	0.4 (0.3)	-0.1 (-13.7)		
Crop Yield □							
Corn (bu/ac)	168 (0.4)	201 (0.2)	33 (20)	201 (0.2)	33 (20)		
Soybeans (bu/ac)	70 (0.1)	70 (0.1)	0 (0)	70 (0.1)	0 (0)		



View Annual-Charts

Select up to 3 scenarios for view

Total N

scenario		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
baseline		44.5	7.2	12.9	14.6	47.5	5.9	74.1	24.3	91.9	13.3
split application reduced till	9.8	9.3	6.7	9.9	11.3	14.0	5.4	18.5	20.0	11.3	10.1
split application reduced till bioreactor		6.8	4.3	7.5	8.6	12.7	3.5	14.5	14.1	9.3	7.6

View Monthly-Charts Select up to 3 scenarios for view ▼ split application re ▼ split application re ▼ Runoff N baseline View Runoff N 24 baseline 18 split application reduced till 12 split application reduced till bioreactor Apr Feb Mar May Jul Oct Nov Dec Jan Jun Aug Sep

scenario		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
baseline		0.8	1.6	23.6	8.1	2.5	0.8	0.1	0.0	0.3	0.4	0.2
split application reduced till		0.8	1.7	2.9	3.5	2.4	0.8	0.1	0.0	0.3	0.5	0.2
split application reduced till bioreactor		0.8	1.7	2.9	3.5	2.4	0.8	0.1	0.0	0.3	0.5	0.2

Month

NTT Watershed Feature

- Users can define a "watershed" or field routing scenario by linking one or more fields
- NTT will simulate the "edge of watershed" load by routing runoff from one field to the next.

The Big Picture

- NTT facilitates producer decision-making (WQ benefits v. yield impacts)
- NTT provides quantitative estimates of N, P and sediment that are essential for marketbased programs or TMDL tracking
- NTT can help producers maximize benefits from conservation practices

Questions?

e-mail: mselman@oce.usda.gov

